Mechanisms of Hydrogen Sulfide against the Progression of Severe Alzheimer's Disease in Transgenic Mice at Different Ages

Eleonora Vandini^a Alessandra Ottani^a Davide Zaffe^b Anita Calevro^a Fabrizio Canalini^a Gian Maria Cavallini^c Rosario Rossi^d Salvatore Guarini^a Daniela Giuliani^a

^a Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Modena, Italy; ^b Department of Biomedical, Metabolic and Neural Sciences, Section of Anatomy, University of Modena and Reggio Emilia, Modena, Italy; ^c Department of Ophthalmology, University of Modena and Reggio Emilia, Modena, Italy; ^d Department of Cardiology, University of Modena and Reggio Emilia, Modena, Italy

Keywords

Hydrogen sulfide · Severe Alzheimer's disease · Learning · Memory · 3x-Tg-Alzheimer's disease · Neuroprotection

Abstract

Backgroud: Alzheimer disease is an age-related severe neurodegenerative pathology. The level of the third endogenous gas, hydrogen sulfide (H₂S), is decreased in the brain of Alzheimer's disease (AD) patients compared with the brain of the age-matched normal individuals; also, plasma H₂S levels are negatively correlated with the severity of AD. Recently, we have demonstrated that systemic H₂S injections are neuroprotective in an early phase of preclinical AD. **Objectives:** This study focuses on the possible neuroprotection of a chronic treatment with an H₂S donor and sulfurous water (rich of H₂S) in a severe transgenic 3×Tg-AD mice model. **Method:** 3×Tg-AD mice at 2 different ages (6 and 12 months)

were daily treated intraperitoneally with an H₂S donor and sulfurous water (rich of H₂S) for 3 months consecutively. We investigated the cognitive ability, brain morphological alterations, amyloid/tau cascade, excitotoxic, inflammatory and apoptotic responses. Results: Three months of treatments with H_2S significantly protected against impairment in learning and memory in a severe 3×Tg-AD mice model, at both ages studied, and reduced the size of Amyloid β plaques with preservation of the morphological picture. This neuroprotection appeared mainly in the cortex and hippocampus, associated with reduction in activity of c-jun N-terminal kinases, extracellular signal-regulated kinases and p38, which have an established role not only in the phosphorylation of tau protein but also in the inflammatory and excitotoxic response. Conclusion: Our findings indicate that appropriate treatments with various sources of H₂S, might represent an innovative approach to counteract early and severe AD progression in humans. © 2018 S. Karger AG, Basel