Mechanisms of Hydrogen Sulfide against the Progression of Severe Alzheimer’s Disease in Transgenic Mice at Different Ages

Eleonora Vandinia Alessandra Ottania Davide Zaffeb Anita Calevroa Fabrizio Canalinia Gian Maria Cavallinic Rosario Rossid Salvatore Guarinia Daniela Giuliania

aDepartment of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Modena, Italy; bDepartment of Biomedical, Metabolic and Neural Sciences, Section of Anatomy, University of Modena and Reggio Emilia, Modena, Italy; cDepartment of Ophthalmology, University of Modena and Reggio Emilia, Modena, Italy; dDepartment of Cardiology, University of Modena and Reggio Emilia, Modena, Italy

\textbf{Keywords} \\
Hydrogen sulfide · Severe Alzheimer’s disease · Learning · Memory · 3x-Tg-Alzheimer’s disease · Neuroprotection

\textbf{Abstract} \\
Background: Alzheimer disease is an age-related severe neurodegenerative pathology. The level of the third endogenous gas, hydrogen sulfide (H\textsubscript{2}S), is decreased in the brain of Alzheimer’s disease (AD) patients compared with the brain of the age-matched normal individuals; also, plasma H\textsubscript{2}S levels are negatively correlated with the severity of AD. Recently, we have demonstrated that systemic H\textsubscript{2}S injections are neuroprotective in an early phase of preclinical AD. Objectives: This study focuses on the possible neuroprotection of a chronic treatment with an H\textsubscript{2}S donor and sulfurous water (rich of H\textsubscript{2}S) in a severe transgenic 3xTg-AD mice model. Method: 3xTg-AD mice at 2 different ages (6 and 12 months) were daily treated intraperitoneally with an H\textsubscript{2}S donor and sulfurous water (rich of H\textsubscript{2}S) for 3 months consecutively. We investigated the cognitive ability, brain morphological alterations, amyloid/tau cascade, excitotoxic, inflammatory and apoptotic responses. Results: Three months of treatments with H\textsubscript{2}S significantly protected against impairment in learning and memory in a severe 3xTg-AD mice model, at both ages studied, and reduced the size of Amyloid β plaques with preservation of the morphological picture. This neuroprotection appeared mainly in the cortex and hippocampus, associated with reduction in activity of c-jun N-terminal kinases, extracellular signal-regulated kinases and p38, which have an established role not only in the phosphorylation of tau protein but also in the inflammatory and excitotoxic response. Conclusion: Our findings indicate that appropriate treatments with various sources of H\textsubscript{2}S might represent an innovative approach to counteract early and severe AD progression in humans.

© 2018 S. Karger AG, Basel

KARGER
E-Mail karger@karger.com
www.karger.com/pl9a